Maggio 2, 2024

Conca Ternana Oggi

Ultime notizie e rapporti economici sull'Italia.

La proteina che potrebbe prolungare la vita umana in un mondo che si surriscalda

La proteina che potrebbe prolungare la vita umana in un mondo che si surriscalda

Una nuova ricerca indica che la durata della vita nei climi caldi non è solo passivamente ridotta da un aumento del tasso metabolico, ma è anche attivamente regolata da una proteina del sistema nervoso chiamata NPR-8, che controlla l’espressione del collagene. Hanno scoperto che i vermi privi di questa proteina avevano una maggiore espressione di collagene a temperature più calde, e quindi mostrano una maggiore resistenza allo stress, meno rughe cutanee legate all’età e una durata di vita più lunga, suggerendo che il meccanismo sottostante potrebbe essere utilizzato per estendere la durata della vita umana in mezzo all’aumento globale temperature. . .

Per molto tempo, gli scienziati hanno notato che molte creature tendono ad avere una durata di vita più lunga in ambienti più freddi rispetto a quelli più caldi. Recenti studi su C. elegansuna specie di nematode, suggerisce che la longevità può essere correlata a una specifica proteina del sistema nervoso che regola la produzione di collagene, il componente principale della pelle, delle ossa e del tessuto connettivo in una varietà di animali.

Dato che la proteina in C. elegans È molto simile alle proteine ​​​​del recettore del sistema nervoso che si trovano in altri[{” attribute=””>species, including humans, this revelation could potentially bring us a step closer to finding methods to manipulate collagen production in order to slow human aging and enhance lifespan, particularly in the context of rising global temperatures. The research, led by a team from Washington State University, was published in the journal Aging Cell.

“Based on animal studies, scientists anticipate that human lifespan will go down in the future as climate change drives up the ambient temperature,” said senior author Yiyong (Ben) Liu, an assistant professor in the WSU Elson S. Floyd College of Medicine and director of the university’s Genomics Service Center. “We have found that warm temperatures leading to short lifespan is not a passive, thermodynamic process as previously thought, but a regulated process controlled by the nervous system. Our findings mean that down the road, it may be possible to intervene in that process to extend human lifespan as temperatures rise.”

C. elegans Wild Type Adult vs Mutant Adult

Scanning electron microscopy images of the cuticle (skin) of C. elegans kept at 25 degrees Celsius show wrinkles on an old (9-day old) adult wild-type worm (left) but smooth skin on an npr-8 mutant worm of the same age (right). Yiyong (Ben) Liu, Washington State University

The researchers looked at a nervous system protein known as NPR-8 in the tiny soil-dwelling worm Caenorhabditis elegans (C. elegans), a commonly used model organism in aging research. During their study, they observed that worms lacking NPR-8 had fewer skin wrinkles as they aged. They also made the unexpected discovery that mutant worms kept at a warm temperature of 25 C (77 F) had increased collagen expression and lived longer than wild-type worms, which did not happen when the worms were kept at 20 C or 15 C (68 F and 59 F, respectively). To determine whether the neural regulation of collagens may play a role in aging and longevity, they conducted a series of additional experiments and analyses.

“What we saw was that the absence of NPR-8 caused an increase in collagen expression, which increased the worms’ stress resistance and lifespan and made them look younger than wild-type worms that were the same biological age,” said co-first author Durai Sellegounder, a former postdoctoral research associate in the WSU Elson S. Floyd College of Medicine who is now a scientist at the Buck Institute for Research on Aging.

Durai Sellegounder

Study author Durai Sellegounder uses a microinjection microscope to create genetically modified C. elegans for an experiment. Credit: Cori Kogan, Washington State University

In one experiment, the researchers reintroduced NPR-8 in mutant worms kept at 25 C and saw that this reverted the worms’ skin from smooth to wrinkled and significantly reduced the animals’ extended lifespan. Next, they showed that the extended lifespan of npr-8 mutant worms also held up under heat stress conditions, with mutant worms surviving significantly longer than wild-type worms when moved into a 35 C (95 F) environment. Additional experiments identified specific neurons responsible for regulating lifespan in response to warm temperatures and pointed to increased expression of collagens as a driver of the improved lifespan at warm temperatures.

The phenomenon of heat shortening lifespan has traditionally been explained by the rate of living theory, which suggests that heat speeds up an organism’s metabolism, causing it to use up its finite store of metabolic energy more quickly. While the researchers still found limited evidence supporting this idea, their study findings indicate that the nervous system also plays an active role in this process.

Given earlier findings that showed that worms lacking NPR-8 were more resistant to infection and oxidative stress, the researchers believe that the NPR-8-controlled increase in collagen expression boosts the animals’ resistance to stressful conditions such as excessive heat. Their next step is to delve deeper into the underlying mechanisms of how increased collagen production enhances stress resistance.

Reference: “The longevity response to warm temperature is neurally controlled via the regulation of collagen genes” by Sankara Naynar Palani, Durai Sellegounder, Phillip Wibisono and Yiyong Liu, 9 March 2023, Aging Cell.
DOI: 10.1111/acel.13815

In addition to Liu and Sellegounder, co-authors on the current study include co-first author and postdoctoral research associate Sankara Naynar Palani and postdoctoral research associate Phillip Wibisono, both of the WSU Elson S. Floyd College of Medicine.

READ  Il test del missile lunare Artemis I della NASA è stato rinviato